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Abstract The rare gas-noble metal systems XeMX

(M = Au, Ag, Cu; X = F, Cl, Br) were investigated at the

CCSD(T) and DFT levels. Geometric structures, natural

bond orbital population, HOMO-LUMO gap, the rare gas-

noble metal interaction and the chemical deformation

density were analyzed. Experimental structure parameters

of the XeAuF and XeMX (M = Ag, Cu; X = F, Cl) were

reproduced at Xa level. At the same time, the XeAuCl and

XeMBr (M = Au, Ag, Cu) compounds were predicted.

The electronegativity of halogen atom X correlates with the

M–X bond length, HOMO-LUMO gap, electronic struc-

tures and Xe–M bond energy.
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1 Introduction

In 1933, Pauling [1] anticipated the possibility of formation of

stable molecules involving rare gas atoms. Four decades later,

his prediction became a reality through the preparation [2] of

xenon hexafluoroplatinate [Xe?(PtF6)-], the first compound

containing a rare gas atom. In the recent years, chemical

compounds involving rare gas elements have attracted con-

siderable attention [3–5] from experimentalists as well as

theoreticians. They are gradually discovered and well

investigated in experiment with a high-resolution Fourier

transform microwave spectrometer [6–18]. This kind of

novel compound with rare gas elements exists and is of

considerable significance to open up the new fascinating field

in the physics and chemistry. Recently, Seidel and Seppelt

[19] demonstrated the existence of the [AuXe4]2? cation in

crystal structure of the AuXe4
2?[Sb2F11

-]2 compound. The

work is very important because it supports the concept that

the rare gas atoms can be directly bonded to the gold atom. In

these species, the presence of chemical bonds between gold

and xenon is in sharp contrast to the conventional behavior of

rare gas and noble metal atoms, which are considered to be

inert from the existing chemical intuitions. Between rare gas

atom and noble-metal halides, the interaction also can be

thought as two closed-shell (for example: in XeAuF system,

Xe: 5p6, Au(I): 5d10) fragments interaction.

For the closed-shell interaction, where dispersion inter-

action plays an important role, it was thought that DF

methods are not applicable. However, there is now much

evidence that a careful choice of the DF gives reasonable

bond lengths and bond energies of Au(I) cluster systems

[20–24]. Whether DF methods can be fit for such special

interaction between rare gas and noble metal? Otherwise,

Pyykkö [25, 26] suggested that most of the bonding

interaction in NgMX is covalent in character; the inter-

pretation was questioned by saying that ‘‘covalency within

the NgAu? species appears to be unproven’’ [27]. The

second goal for us is to know which kind of the rare gas-

noble metal interaction is.

Here, we reported the elementary results on closed-shell

interaction system XeMX. The theoretical investigations by

using DF methods including geometrical structures, elec-

tronic structures in such special closed-shell interaction

system are less reported. In the present research, the inves-

tigations of the XeMX (M = Au, Ag, Cu; X = F, Cl, Br)

series are not only to understand the behavior of the systems
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under consideration, but also to give an insight into the nature

of the bond between rare gas and noble metal atoms. It would

be meaningful and interesting to give a description of

structures and properties of this new class of compounds.

2 Computational details

The geometries were optimized by the CCSD(T) and DFT

methods. The CCSD(T) calculations were carried out with

the program packages GAUSSIAN 03 [28] and DFT cal-

culations were performed with ADF 2008 package initially

developed by Baerends et al. [29]. Several different DFT

potentials of exchange-correlation were carried out to the

systems. We used: (1) the simple local Xa exchange

potential by Slater [30–33], with parameter a = 0.7; (2) the

local correlation-corrected version developed by Vosko,

Wilk and Nusair (VWN) in 1980 [34]; (3) the nonlocal

gradient exchange potential of Becke (B) of 1988 [35] and

the nonlocal gradient correlation potential of Perdew (P) of

Table 1 Calculated structural
parameters of XeMX (distances
in pm)

a The results from Ref. [52]
b The results from Ref. [53]
c The results from Ref. [12] for
XeAuF; Ref. [13] for XeAgF and
XeAgCl; Ref. [16] for XeCuF and
XeCuCl
d The results from Ref. [54] for
XeAuF
e The experimental values for
XeAuF in Ref. [12]; for XeAgF
and XeAgCl in Ref. [13]; for
XeCuF and XeCuCl in Ref. [16]
f The terms Rcov and RvdW

indicate the covalent and van der
Waals limits, respectively, of the
Xe–M bond (see text for more
details), in Refs. [16] and [18]

Method XeAuF XeAuCl XeAuBr

RXe–Au RAu–F RXe–Au RAu–Cl RXe–Au RAu–Br

MP2a 254.5 192.2 259.8 221.3

MP2b 254.2

MP2c 255.0

MP2d 251.2 190.1

CCSD(T)d 257.3 192.1

CCSD(T) 256.3 192.9 261.8 223.1 263.6 234.4

Xa 254.0 191.6 260.0 220.9 261.1 234.7

VWN 254.0 191.4 258.6 220.3 259.6 234.1

VBP 261.7 195.7 267.7 224.8 270.0 239.1

VPW91 261.3 195.6 267.1 224.8 269.5 238.9

Exp.e 254.3 191.8

Rcov
f 257.0 257.0 257.0

RvdW
f 295.0 295.0 295.0

Method XeAgF XeAgCl XeAgBr

RXe–Ag RAg–F RXe–Ag RAg–Cl RXe–Ag RAg–Br

MP2a 268.4 196.9 272.8 227.4

MP2b 266.5

MP2c 268.0 273.0

CCSD(T) 265.7 196.4 270.1 227.7 271.8 238.9

Xa 266.0 195.9 267.0 226.4 266.2 239.1

VWN 265.8 194.9 266.8 225.4 266.1 238.1

VBP 275.1 200.0 282.0 231.2 285.0 245.1

VPW91 274.9 199.9 281.4 231.2 284.3 244.6

Exp.e 266.2 197.1 270.0

Rcov
f 258.0 258.0 258.0

RvdW
f 299.0 299.0 299.0

Method XeCuF XeCuCl XeCuBr

RXe–Cu RCu–F RXe–Cu RCu–Cl RXe–Cu RCu–Br

MP2a 245.9 173.7 249.7 206.6

MP2b 243.9

MP2c 246.0 250.0

CCSD(T) 242.9 174.3 246.9 206.0 248.5 218.2

Xa 243.0 173.6 249.0 204.8 249.9 218.5

VWN 243.0 173.4 243.4 204.3 247.1 218.2

VBP 253.3 177.0 258.8 208.4 260.8 222.7

VPW91 253.4 177.2 258.6 208.5 259.8 222.6

Exp.e 243.0 175.0 247.0

Rcov
f 237.0 237.0 237.0

RvdW
f 278.0 278.0 278.0
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1986 [36]; (4) the generalized gradient approach of Perdew

and Wang (PW91)[37] and their combinations.

Because the dominating interactions in chemical process

mainly come from the valence electrons, and in order to

reduce the calculation costs the inner core shells were fro-

zen via a frozen approximation [38], namely [1s2] for F,

[1s2–2p6] for Cl, [1s2–3d10] for Br, [1s2–4f14] for Au, [1s2–

4p6] for Ag, [1s2–3p6] for Cu and [1s2–4d10] for Xe. All of

the core electrons were calculated by Dirac method [39] and

unchanged transferred into molecules. Relativistic effects

were particularly important. The zeroth order regular

approximation scalar Hamiltonian [40–44] was adopted.

The higher level TZ2P-STO basis sets for all atoms were

used in DFT calculations. In ab initio CCSD(T) calculations,

the aug-cc-PVTZ basis sets [45–51] for F, Cl, Br, Au, Ag, Cu

and Xe atoms. For Au, Ag, Cu and Xe atoms, the corre-

sponding atom-centered effective core potentials were used

[48, 49]. All structures were fixed to a linear configuration.

3 Results and discussions

3.1 Structures of the molecules

The important property of the rare gas-noble metal halides

is perhaps the short rare gas-to-metal bond length. This

property was first noticed with ArAgCl [6] and continues to

be observed in all other NgMX molecules. Table 1 shows

the experimental, ab initio and DFT structural parameters

for XeMX (M = Au, Ag, Cu; X = F, Cl, Br) molecules. It

is interesting to compare the rare gas-noble metal bond

lengths as obtained in the present work with that of earlier

reports for different classes of rare gas compounds [12, 13,

16, 52–54] containing noble metal-rare gas bonding.

For XeAuF, high level CCSD(T) with high-quality basis

sets overestimated the Xe–Au distance by 2 pm compared to

the experimental values. Local density functional (VWN,

Xa) reproduce the Xe–Au distance. While the nonlocal

exchange correlation corrections (VBP, VPW91)were added,

the Xe–Au distance were overestimated 7 pm. Recently,

Belpassi et al. [54] have studied NgAuF and NgAu? systems

(Ng = Ar, Kr, Xe) by using all-electron fully relativistic DC-

CCSD(T) method with high-quality extended basis sets,

which has 1 g function. For XeAuF system, the obtained Xe–

Au bond length is 3 pm above experiment. Our Xa method

gave the even better results. For XeMX (M = Ag, Cu;

X = F, Cl) systems, the Xe–M distances obtained by

CCSD(T) are consistent with the experimental values within

1 pm. Local density functional (VWN, Xa) reproduce the

Xe–M distance. The Xa gave the same good results with the

CCSD(T). While the nonlocal exchange correlation correc-

tions (VBP, VPW91) were added, the Xe–M distance was

overestimated by about 10 pm. For XeMX (M = Au, Ag,

Cu; X = F, Cl, Br) molecules, the bond lengths are quite

short in comparison to those of the van der Waals complexes

Ar–NaCl [55], ArHg [56], Kr–HF [57], and Xe–HF [58].

The short bond lengths are reproduced by both ab initio

CCSD(T) and LDF–Xa calculations.

In view of the interesting reports [6–8, 12, 14, 15] on

comparison of the Xe–M bond length with respect to a

covalent limit Rcov [rcov(M(I)) ? rcov(Ng)] and a van der

Waals limit RvdW[rion(M?)?rvdW(Ng)]. Both of these

limits are simply benchmark values and should not be

considered as hard and fast rules. We have tabulated the

corresponding limiting values of the bond lengths in

Table 1. From this table, it is quite evident that the cal-

culated Xe–Ag and Xe–Cu bond lengths are less than the

van der Waals limits and greater than the covalent limits.

However, Xe–Au distance is less than the covalent limit.

The values for the stretching frequencies for several

XeMX molecules are given in Table 2.

The low values in all cases indicate that the complexes

are rigid. They are much more rigid than the reference van

der Waals complex Ar–NaCl [55]. From the comparison in

Table 2, it is clear that the x(XeM) frequencies in XeMX

complexes decreased when the halogen atom changes from

F to Br. In all cases, these frequencies are much greater than

the x(ArNa) value for the Ar–NaCl van der Waals bond,

and much nearer to low-end values for chemical bonds.

3.2 NBO population of XeMX (M = Au,

Ag, Cu; X = F, Cl, Br)

Second, we discuss the charge distributions in XeMX

systems by means of natural bond orbital (NBO)

Table 2 Harmonic Frequencies xe (cm-1) of the Xe–M Bond in

XeMX

Complex x(NgM) (cm-1) x(MX) (cm-1)

Cal.a Cal.b Exp.c Cal.a

XeAuF 177.72 165.00 169.00 599.00

XeAuCl 154.00 390.76

XeAuBr 142.74 270.86

XeAgF 135.08 108.00 130.00 530.50

XeAgCl 132.59 99.00 120.00 353.83

XeAgBr 123.87 266.10

XeCuF 184.23 169.00 178.00 652.03

XeCuCl 153.46 146.00 155.00 427.27

XeCuBr 131.43 330.62

Ar–NaCl 21.00d

a This work
b The results from Ref. [12] for XeAuF, Ref. [13] for XeAgF and

XeAgCl; Ref. [16] for XeCuF and XeCuCl
c Experimental values from Table 5 in Ref. [12]
d Ref. [55]
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population analysis. Corresponding results are shown in

Table 3. The atomic charges vary systematically, in the

case of Au by about 0.2 from ?0.42 for strongly electro-

negative F to ?0.23 for least electronegative Br. So do the

atomic charges of Ag and Cu atom. At the same time, there

are about 0.1–0.2 electron holes in the M(n-1)d and Xe5p

semi-core shell, while the outer valence shell is still popu-

lated by 0.5–0.8e in the Mns and approximately 2.0e in

Xe5s shell. Ag4d shell transfers a few electrons to Ag5sp

shell. Since Xe5p and M(n-1)d shell is not completely

closed shell, the weak rare gas-noble metal interaction

occurs. The quantum calculation indicated a net charge

transfer of *0.15 electron from Xe to MX, as well as

valence molecular orbital with fully shared electron density

between Xe and M. There is thus strong evidence of rare

gas-noble metal chemical bonding in these complexes.

3.3 Xe–M bond energy decomposition

Thirdly, the Xe–M bond energy has been analyzed and

decomposed. According the theory of Ziegler [59], the

bond energy can be split up into two parts [60, 61]. One is

the ‘‘steric interaction energy’’ (Ester.) that comes from the

electrostatic interaction (Eele.) between the fragments (with

unchanged electron densities) and the Pauli exchange

repulsion (Epauli) due to the antisymmetry requirement

raising the energy when occupied fragment orbitals over-

lap. The other is the ‘‘orbital interaction energy’’ (Eorb.) due

to quantum mechanical interference and orbital relaxation

from the initial fragment states to the final molecular states.

The orbital interaction contains charge transfer contribu-

tions (mixing of occupied orbitals on one fragment and

virtual orbitals on the other fragment) and polarization

contributions (mixing of occupied and virtual orbitals on

the fragment itself). The bond energies are analyzed and

presented in Table 4.

Etot: ¼ Ester: þ Eorb: ¼ EPauli þ Eele: þ Eorb: ð1Þ

The Xe–M bonding energy for the XeMX at the Xa
level are broken down following the Eq. 1 and given in

Table 4. For XeMX systems, when the Xe and MX

approach each other, the Pauli overlap repulsion increases

comparatively slowly, whereas the electrostatic overlap

attraction increases significantly enough so that the

combined effect of orbital mixing and electron

correlation adds up to a weak interaction.

Interesting trends so far observed include the increasing

strength of the Xe–M interaction in XeMX as X is altered

from Br to F. A traditional viewpoint recognizes these

trends as being consistent with the greater electron with-

drawing properties of F over Cl. The relationship between

the Xe–M interaction energy and the electronegativity of X

is linear (Table 5; Fig. 1). At the same time, we observed

the increasing strength of the Xe–M interaction in XeMX is

along with the order: EXe–Au [ EXe–Cu [ EXe–Ag. Our

calculated results are consistent with the results in [6–8, 12,

14, 15, 52].

Table 3 NBO populations and charges of XeMX at Xa level

System Xe5s Xe5p Mnsa Mnpa M(n-1)da QXe QM QX

XeAuF 1.97 5.76 0.84 0.03 9.69 0.24 0.42 -0.66

XeAuCl 1.97 5.79 0.86 0.03 9.78 0.21 0.30 -0.51

XeAuBr 1.97 5.79 0.89 0.04 9.82 0.22 0.23 -0.45

XeAgF 1.98 5.86 0.46 0.02 9.86 0.14 0.64 -0.78

XeAgCl 1.98 5.87 0.54 0.02 9.90 0.14 0.52 -0.66

XeAgBr 1.98 5.86 0.57 0.03 9.91 0.14 0.46 -0.60

XeCuF 1.98 5.85 0.52 0.05 9.79 0.15 0.62 -0.77

XeCuCl 1.98 5.86 0.56 0.05 9.86 0.15 0.52 -0.67

XeCuBr 1.98 5.86 0.59 0.05 9.89 0.15 0.46 -0.61

a For Au n = 6, for Ag n = 5, for Cu n = 4

Table 4 Xe–M interaction energy DEtot. (in kJ/mol) decomposition

of XeMX at Xa level

System Epauli Eele. Epauli ? Eele. Eorb. DEtot.
a

XeAuF ?244.69 -206.08 ?38.61 -168.08 -129.47

XeAuCl ?223.76 -185.11 ?38.65 -143.39 -104.74

XeAuBr ?226.58 -185.75 ?40.83 -139.03 -98.20

XeAgF ?124.10 -116.75 ?7.35 -78.73 -71.38

XeAgCl ?132.68 -117.96 ?14.72 -74.64 -59.92

XeAgBr ?144.92 -125.35 ?19.57 -75.73 -56.16

XeCuF ?137.25 -122.08 ?15.17 -105.14 -89.97

XeCuCl ?126.28 -112.49 ?13.79 -90.82 -77.03

XeCuBr ?133.12 -117.37 ?15.75 -89.75 -74.00

a DEtot. represents the Xe–M bong energy

Table 5 The Pauling electronegativity (ENv), M–X bond length

RM–X (in pm), the HOMO-LUMO gap Dei (in eV) and the Xe–M bond

energy of DEtot. (in kJ/mol) in the XeMX system

System ENv RM–X Dei DEtot.
a

XeAuF 3.90 191.6 3.93 -129.47

XeAuCl 3.16 220.9 3.56 -104.74

XeAuBr 2.96 234.7 3.26 -98.20

XeAgF 3.90 195.9 3.74 -71.38

XeAgCl 3.16 226.4 3.50 -59.92

XeAgBr 2.96 239.1 3.28 -56.16

XeCuF 3.90 173.6 3.74 -89.97

XeCuCl 3.16 204.8 3.65 -77.03

XeCuBr 2.96 218.5 3.47 -74.00

a DEtot. represents the Xe–M bong energy
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Fig. 1 Electronegativity ENv of

atom X plotted against Xe–M

bond energy (EXe–M) in

a XeAuX; b XeAgX; c XeCuX

Fig. 2 Electronegativity ENv of

halide atom X plotted against

M–X bond length (RM–X) in

a XeAuX; b XeAgX; c XeCuX
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Fig. 3 Electronegativity (ENv)

of atom X plotted against

HOMO-LUMO gap (Dei) in

a XeAuX; b XeAgX; c XeCuX

Fig. 4 Correlation of

electronegativity ENv of atom

and, a effective charge of Au,

QAu; b effective charge of X,

QX; c population of Au5d;

d population of Au6s in XeAuX
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Fig. 5 Correlation of

electronegativity ENv of atom

and, a effective charge of Ag,

QAg; b effective charge of X,

QX; c population of Ag4d;

d population of Ag5s in XeAgX

Fig. 6 Correlation of

electronegativity ENv of atom

and, a effective charge of Cu,

QCu; b effective charge of X,

QX; c population of Cu3d;

d population of Cu4s in XeCuX
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3.4 Variation of the halogen atom

3.4.1 The M–X bond length

For XeMX (M = Au, Ag, Cu; X = F, Cl, Br) system, if RX

is the effective radius of the halogen atom, the M–X bond

length varies with the transformation from F to Br. The

electronegativity ENv is strongly coupled to the valence

radii of X. The results are listed in Table 5. The correlation

between RM–X and ENv is shown in Fig. 2. The correlation

between electronegativity (ENv) of X and RM–X is linear.

The line in Fig. 2 is probably due to the different overall

charges Q.

3.4.2 HOMO-LUMO gap

The HOMO-LUMO gaps are displayed in Table 5, too. As

to be expected, they correlate with the ENv of the halogen

atom X (Fig. 3), of course along the line depending on the

overall charge Q. The frontier orbital HOMO-LUMO

energy gaps may correlate with the stability of the systems.

From our calculations, we find that with X = F, the XeAuF

become the most stable molecule (Table 5).

3.4.3 The M-charge QM, X-charge QX, Mns and M(n-1)d

population

The correlations between QM, QX, the Mns, M(n-1)d

population and the electronegativity ENv of atom X is

shown in Figs. 4, 5, 6. The bigger the electronegativity

(ENv) of X, the larger the effective charge QM and QX, the

larger the hole in the M(n-1)d shell, and the fewer electron

in the Mns shell, the stronger Xe–M interaction.

3.5 Chemical deformation densities

The charge density distribution provides valuable infor-

mation about the nature of bonding or nonbonding

interactions in various molecular systems. Belpassi et al.

[54] have carried out the topological analysis of the elec-

tronic density upon formation of the Ng–Au bond and the

corresponding charge-transfer curves. The electronic den-

sity mainly developed in the framework of the theory of

atoms in molecules (AIM) of Bader et al. [62]. They found:

‘‘the Ng–M bond is a pronounced charge accumulation in

the middle region between the Ng and Au nuclei, delimited

on both sides by a zone of charge depletion particularly

Fig. 7 Electron density

difference Dq (e/Å3) plots at

Xa level, a XeAuF; b XeAuCl;

c XeAuBr; along the plane of

three atoms. Contour line values

are ±0.01 9 2n eÅ-3 (n = 0, 1,

2, …); negative contour lines

are dashed
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marked at the noble gas’’. They concluded that the Ng–Au

interaction is a polar covalent bond.

For the title compounds, we want to calculate the

chemical deformation density which in the XeMX system

to study the Xe–M bond. Dalton [63] introduced the con-

cept of atoms in chemistry as building blocks of matter,

which retain their individuality and spherical shape to a

large extent when they form compounds. It is often

implicitly assumed or explicitly stated that independent

atoms can only possess spherically symmetric charge dis-

tributions. A common practice is to compare the electron

density distribution in molecules and crystals with a ref-

erence density, which is the superposition of densities of

the independent atoms in their spherically symmetric

ground states. The above mentioned density pattern is

usually called the ‘‘deformation density’’. It is believed that

any deviation from sphericity of the charge distribution of

AIM or crystals is an indication of the chemical forces

between them.

Figures 7, 8, 9 give the deformation density maps for

XeMX (M = Au, Ag, Cu; X = F, Cl, Br). Solid contours

mean electronic density increase, dashed contours mean

electronic density decrease. Figures 7, 8, 9 display about

?0.01–0.02 e/Å3 maximum density increase between the

Xe and M atoms in XeMX system. However, the values of

all the maximum density are very small and change little

from molecule to molecule, making any sharp distinction

in the nature of the bond for the three metal atoms. The

deformation density can not associate with the Xe–M

interactions directly. The regions of density increased are,

therefore, the regions to which charge is transferred relative

to the separated atoms to obtain a state of electrostatic

equilibrium and hence a chemical bond. From this point of

view, a density difference map provides us with a picture

of the ‘‘bond density’’.

4 Conclusion

In this work, ab initio CCSD(T) and DFT methods have

been performed to explore the geometric structure, elec-

tronic structure, HOMO-LUMO gap and weak noble

Fig. 8 Electron density

difference Dq (e/Å3) plots

at Xa/TZ2P level, a XeAgF;

b XeAgCl; c XeAgBr; along the

plane of three atoms. Contour

line values are ±0.01 9 2n

eÅ-3 (n = 0, 1, 2, …); negative

contour lines are dashed
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gas-noble metal interaction. The key conclusions are as

follows:

1. For XeMX (M = Au, Ag, Cu; X = F, Cl, Br) system,

the simplest local Xa functional and ab initio CCSD(T)

methods can reproduce the geometric structures fairly

well as compared to experimental results, within 2 pm.

With nonlocal gradient correlations, DFT overesti-

mated them. In all the species except for XeAuF, the

Xe–M distances are between the covalent limit and van

der Waals limit. For XeAuF, the Xe–Au distance is

less than the covalent limit for about 3 pm.

2. The NBO charges and populations are investigated.

Since Xe5p and M(n-1)d shell is not completely

closed shell, the weak rare gas-noble metal interaction

occurs. At the same time, a net charge transfer of

*0.15 electron from Xe to MX, as well as valence

molecular orbital with fully shared electron density

between Xe and M. There is thus strong evidence of

rare gas-noble metal chemical bonding in these

complexes that is also indicated by interference

densities of up to ?0.01–0.02 e/Å3 between the

interacting Xe–M atoms.

3. The weak rare gas-noble metal interaction is decom-

posed and analyzed. The Xe–M interaction in XeMX

as X is altered from Br to F. And for the same X atom,

we observed the increasing strength of the Xe–M

interaction in XeMX is along with the order:

EXe–Au [ EXe–Cu [ EXe–Ag. The electronegativity of

halogen atom X correlate well with the Xe–M

distances, the HOMO-LUMO gap, the charge on the

M, X atoms and the population of Mns, M(n-1)d

shells.
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25. Pyykkö P (1995) J Am Chem Soc 117:2067. doi:10.1021/

ja00112a021
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